

Selective Data Replication for Online Social Networks with Distributed Datacenters Guoxin Liu^{*}, Haiying Shen^{*}, Harrison Chandler^{*}

Presenter: Haiying (Helen) Shen Associate professor

*Department of Electrical and Computer Engineering, Clemson University, Clemson, USA

Outline

- Introduction
- Related work
- Data analysis
- Selective data replication
- Evaluation
- Conclusion

Introduction

- Facebook's growth*
 - Monthly active users:
 - 700 millions in 2011
 - 800 millions in 2013
 - Users distribution:
 - 70% outside US and Canada in 2011
 - 80% outside US and Canada in 2013
 - Challenges for service scalability:
 - Global distribution: low service latency and costly service to distant users

• Scaling problem: bottleneck of the limited local resources *http://www.facebook.com/press/info.php?statistics.

Current Facebook datacenters

OSN distributed small datacenters

- New datacenter infrastructure
 - Globally distributed small datacenters
 - Luleå datacenter in Sweden: reducing the service latency of European users

OSN distributed small datacenters

• New problems

Introduction

- Each datacenter has a full copy of all data
- Single-master replication protocol:
 - a slave datacenter forwards an update to the master datacenter, which then pushes the update to all datacenters

OSN distributed small datacenters

New problems

- Single-master replication protocol: tremendously high load
 - Ten million updates per second
- Locality-aware mapping: stores a user's data to his/her geographically-closest datacenter
 - Frequent interactions between far-away users lead to frequent communication between datacenters

Introduction

- Key challenge:
 - How to replicate data in globally distributed datacenters to minimize the inter-datacenter communication load while still achieve low service latency

- Solution: Selective Data replication mechanism in Distributed Datacenters (SD³)
 - Globally distributed small datacenters
 - Locality-aware mapping of users to master datacenters
 - Selective user data replication
 - Atomized user data replication

Outline

- Introduction
- Related work
- Data analysis
- Selective data replication
- Evaluation
- Conclusion

Related work

- Facebook community pattern:
 - Interaction communities exist
 - Interaction frequencies between friends vary
- Different atomized data types (e.g., wall/friend posts, personal info, photo/video comments) have different update/visit rates
- Facebook scalability
 - Inside datacenter
 - Collecting the data of users and their friends in the same server
 - Outside datacenter
 - Distributing region servers acting as Facebook service proxies
- Replication strategies in P2P and Cloud
 - Not suitable without considering the interactions among social friends

Outline

- Introduction
- Related work
- Data analysis
- Selective data replication
- Evaluation
- Conclusion

- Data crawling:
 - We used PlanetLab to evaluate an OSN's access latency and the benefits of globally distributed datacenters
 - We crawled status, friend posts, photo comments and video comments of 6,588 users from May 31-June 30, 2011

• We crawled 22,897 friend pairs and their locations

- Basis of distributed datacenters
 - Service latency of the OSN
 - Typical latency budget 50-100 milliseconds
 - 20% of PlanetLab nodes experience service latency >102ms
 - Service latency with simulated globally distributed datacenters
 - more datacenters lead to lower service latency
 - Suggest distributing more small datacenters globally

- Basis for selective data replication
 - Friend relationships do not necessarily mean high data visit/update rates
 - Interaction rate between some friends is not high
 - Replication based on static friend communities is not suitable
 - Interaction rate among friends vary over time
 - Visit/update rate of data replicas should be periodically checked

- Basis for atomized data replication
 - Different types of data have different update rates
 - The update rates of different types of data of a user vary
 - Exploiting the different visit/update rates of atomized data to make decision of replication separately
 - Avoid replicating infrequently visited and frequently updated atomized data to reduce inter-datacenter updates

Outline

- Introduction
- Related work
- Data analysis
- Selective data replication
- Evaluation
- Conclusion

- An overview of SD³
 - Deploy worldwide distributed smaller datacenters
 - Map users to their geographically closest datacenters as their master datacenters
 - Replicate data only when the replica saves network load
 - Atomize a user's data based on different types

- Local replicas of friends' data
 - Reduce service latency (related to visit rate)
 - Generate data update load (related to update rate)
- Selective data replication (SD³): minimize network load while maintain low service latency
 - Consider both visit rate and update rate of a user's data to decide replication
 - Adopt a simple measurement for network load:
 - Package size \times traffic distance

- For a specific replica set of all datacenters:
 - Network load benefits:
 - $B_{total} = O_s O_u$
 - O_s : saved network load
 - The total differences of visit network load between with and without all replicas
 - O_u : update network consumption
 - The total update network load with all replicas
 - Goal: maximizing B_{total}
 - Solution:
 - For each datacenter's non-master user data

•
$$B_{c,j} = O_{s,j} - O_{u,j} = (V_{c,j}S_j - U_jS_u)D_{c,cj}$$

• Maximize the benefits of each user data replica

- Decision of replication based on prediction
 - Constant visit rate and update rate
 - All user data j that $B_{c,j} > 0$
 - Large variance of visit and update rates
 - Introduce two thresholds: T_{Max} and T_{Min}
 - $B_{c,j} > T_{Max}$, create a new replica of user data j
 - $B_{c,j} < T_{Min}$, remove the replica of user data j
 - Decision of thresholds:
 - Based on user service latency constraint, saved network load, replica management overhead and so on

- Algorithm analysis of SD³
 - Performance
 - SPAR: replicating all friends data
 - RS: replicating all visited data
 - SD³: selective replication
 - Time complexity of SD³:
 - O(n) (n: num. of users)
- Enhancement:
 - Atomized user data replication
 - Handle different types of user data separately to decide replication

[3] M. P.Wittie, V. Pejovic, L. B. Deek, K. C. Almeroth, and B.Y. Zhao. Exploiting locality of interest in online social networks. In Proc. of ACM CoNEXT, 2010.

[18] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and P. Rodriguez. The little engine(s) that could: scaling online social networks. In Proc. of SIGCOMM, 2010.

Outline

- Introduction
- Related work
- Data analysis
- Selective data replication
- Evaluation
- Conclusion

Used crawled the OSN data for

- Update rate of each user data type
 - Derived visit rate according to [11]
- Number of friends and friend distribution
- Visit rate distribution of a user data type among friends
- I3 simulated datacenters
- 36,000 simulated users

Comparison:

- SPAR [18]: replicating all friends data
- RS [3]: replicating all visited data and keep within a certain time
 - RS_L and RS_S
- LocMap: without replication

[3] M. P.Wittie, V. Pejovic, L. B. Deek, K. C. Almeroth, and B.Y. Zhao. Exploiting locality of interest in online social networks. In Proc. of ACM CoNEXT, 2010.

[11] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Characterizing user behavior in online social networks. In Proc. of ACM IMC, 2009.

[18] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra, and P. Rodriguez. The little engine(s) that could: scaling online social networks. In Proc. of SIGCOMM, 2010. 25

- Effect of Selective User Data Replication
 - Avoid replicating rarely visited and frequently updated user data
 - SD³ generates a small number of replicas

- Effect of Selective User Data Replication
 - Avoid replicating rarely visited and frequently updated user data

• SD³ saves the highest network load

- Effect of Selective User Data Replication
 - Avoid replicating rarely visited and frequently updated user data
 - SD³ achieves a small service latency

- Effect of Atomized User Data Replication
 - Separately handle different user data types
 - SD³ with atomized user data replication saves at least 42% network load

Outline

- Introduction
- Related work
- Data analysis
- Selective data replication
- Evaluation
- Conclusion

Conclusion

- Goal:
 - Low inter-datacenter network load and low service latency
- Selective data replication mechanism in Distributed Datacenters (SD³)
 - Design supports:
 - Crawled trace data
 - Design principles:
 - Jointly consider both visit rate and update rate of a user data's to decide the replication in order to minimizing the network load
 - Enhancement:
 - Atomized data (each data type) handled separately
- Future wok:
 - Investigate the determination of all parameters to meet different requirements on service latency and network load

Haiying (Helen) Shen, Associate Professor shenh@clemson.edu Pervasive Communication Laboratory Clemson University

Clemson is hiring Postdoc in Connected Vehicles